
QTL · genetic background interaction: predicting
inbred progeny value

Jean-Luc Jannink

Received: 20 April 2007 / Accepted: 11 July 2007 / Published online: 16 August 2007

� Springer Science+Business Media B.V. 2007

Abstract Failures of the additive infinitesimal

model continue to provide incentive to study other

modes of gene action, in particular, epistasis. Epis-

tasis can be modeled as a QTL by genetic background

interaction. Association mapping models lend them-

selves to fitting such an interaction because they often

include both main marker and genetic background

factors. In this study, I review a model that fits the

QTL by background interaction as an added random

effect in the now standard mixed model framework of

association analyses. The model is applied to four-

generation pedigrees where the objective is to predict

the genotypic values of fourth-generation individuals

that have not been phenotyped. In particular, I look at

how well epistatic effects are estimated under two

levels of inbreeding. Interaction detection power was

8% and 65% for pedigrees of 240 randomly mated

individuals when the interaction generated 6% and

20% of the phenotypic variance, respectively. Power

increased to 21% and 94% for these conditions when

evaluated individuals were inbred by selfing four

times. The interaction variance was estimated in an

unbiased way under both levels of inbreeding, but its

mean squared error was reduced by 40% to 70%

when estimated in inbred relative to randomly mated

individuals. The performance of the epistatic model

was also enhanced relative to the additive model by

inbreeding. These results are promising for the

application of the model to typically self-pollinating

crops such as wheat and soybean.

Keywords Association mapping � Epistasis �
Genetic background � Inbreeding � Pedigree

Abbreviations

IBD Identity by descent

QTL Quantitative trait locus/loci

Introduction

The additive infinitesimal model has served remark-

ably well, both for the development of quantitative

genetics and for the prediction of resemblance

between relatives and short-term genetic gain. Nev-

ertheless, failures of this model continue to provide

incentive to study other modes of gene action, in

particular, epistasis. A parameter that additive models

fail to predict well is the genetic variance, especially

for mid- to long-term selection in which some level

of inbreeding is occurring (Fig. 1). The effect of

epistasis on this parameter has been studied theoret-

ically (Cheverud and Routman 1996; Goodnight

1987; Goodnight 2004; Jannink 2003), and
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observations consistent with its predicted impact have

been observed after founder events (Bryant and

Meffert 1993; Cheverud et al. 1999) and during

selection (Fig. 1; Carlborg et al. 2006).

A further incentive to study epistasis is that

biotechnologies are giving us unprecedented ability

to determine what alleles are present at loci of interest.

To take advantage of this ability, we need to be able to

predict what phenotypes are conferred by the multi-

locus genotypes that we can assemble. Then the

process of crop improvement will be turned on its

head: rather than selecting phenotypes of interest in

order to obtain desired genotypes, we will select target

genotypes in order to obtain desired phenotypes. This

enduringly elusive ‘‘improvement by design’’ clearly

requires greater ability to predict phenotype from

multi-locus genotype than we currently have.

One approach to studying epistasis is to examine

the effect of alleles at a QTL as modulated by the

genetic background in which they are placed. This

approach is appealing for two reasons. First, it is

simple. Allowing for the genetic background to serve

as the interactor removes the need to know the

identity of the specific interacting loci or how many

such loci there are. It also decreases the importance

of the mode of interaction (additive by additive,

additive by dominance, additive by additive by

additive, etc.). Finally, in the search for loci that act

epistatically, it allows for a parsimonius

one-dimensional search strategy (Boer et al. 2002;

Jannink and Jansen 2001).

This interest in epistasis comes at a time when

association genetic studies are demonstrating their

ability to identify marker polymorphisms correlated

with the phenotype, be that in pedigreed populations

(e.g., Arbelbide and Bernardo 2006; Breseghello and

Sorrells 2006; Kraakman et al. 2004; Parisseaux and

Bernardo 2004) or in germplasm collections (Thorns-

berry et al. 2001). Association mapping models lend

themselves readily to modeling a QTL by genetic

background interaction because they often already

include both main marker and genetic background

effect terms (Kennedy et al. 1992; Yu et al. 2006).

The genetic background term is necessary to account

for heterogeneous genetic relationships between

observed individuals in the experiment. That is, some

individuals may be more closely related than average

by virtue of belonging to the same sub-population, or

by belonging to the same (possibly extended) family.

The genetic background term therefore prevents error

residuals from being correlated, which otherwise

would invalidate the test (Jannink et al. 2001).

Modeling the QTL by genetic background term

therefore amounts to adding an interaction between

two terms that are already in the model.

Depending on what type of genetic background

term is used, the QTL by genetic background

interaction will have different interpretations. The

simplest accounting for genetic background entails a

term that classifies observations according to what

subpopulation the individual that produced them

belongs. Note that an individual need not belong

exclusively to a single subpopulation. The classifica-

tion of individuals works equally well if classification

variables are continuous and sum to one, as will

happen if only the probability that an individual

belongs to a particular subpopulation can be inferred

(Pritchard et al. 2000; Yu et al. 2006). The interac-

tion between a marker and such a classification

indicates that the associated effect differs between

subpopulations. The difference in associated effect

can have at least two non-mutually-exclusive causes.

First, epistasis may be involved. That is, the associ-

ated causal polymorphism interacts with other loci

that modulate the phenotypic effects of each variant,

and allele frequencies at these other loci differ across

the subpopulations. Second, subpopulations may
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Fig. 1 Observed and predicted response of the genotypic

variance to selection for high oil percentage of genotypic

variance in oil content. Observed response was documented in

Frey and Holland (1999). Predicted response derived from

simulation using Qu-Gene (Podlich and Cooper 1998) and

assuming 70 QTL with additive effects equal to 1/10 of those

identified in Kianian et al. (1999) and with initial frequencies

sampled from a uniform distribution
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differ in the extent and sign of linkage disequilibrium

between a marker locus and causal polymorphism.

Hill and Robertson (1968) studied disequilibrium

between neutral loci in finite populations and showed

that the variance of the linkage disequilibrium

coefficient D (defined in Lynch and Walsh 1998, p.

94) across replicate lines drawn from a population in

linkage equilibrium could be ‘‘of an order of mag-

nitude similar to that of the variance of gene

frequencies after some generations of inbreeding.’’

Thus, if drift played an important role in establishing

the association between marker and QTL, heteroge-

neity of association across subpopulations will be the

norm. In this case, rather than modeling a main

marker effect and a subpopulation interaction effect,

it may make more sense to nest the marker effect

within subpopulations.

In a somewhat more fine-grained fashion, the

genetic background can be modeled as a random

effect for each individual, with the variance-covari-

ance matrix of the vector of effects determined by

identity by descent (IBD) probabilities among indi-

viduals (Lynch and Walsh 1998, p. 755). Usually this

model presupposes that all individuals belong to the

same subpopulation such that questions of association

heterogeneity do not come into play. In this case, the

interaction between a given marker allele and the

genetic background also becomes a random effect.

The interpretation of the effect is that the allele’s

influence on the phenotype should display resem-

blance between relatives: the contribution of the

allele to the phenotypes of full-sibs will be similar but

it’s contribution to the phenotypes of two unrelated

individuals may be dissimilar.

In this study, I review and develop theory

presented in (Jannink 2007) that relates the variance

of the marker by genetic background interaction

variance back to the standard additive-by-additive

epistatic variance (Lynch and Walsh 1998). I then

discuss a statistical model to fit this interaction effect

in the context of a mixed model of the kind proposed

by Kennedy et al. (1992) where the relationship

between individuals is accounted for using the

pairwise IBD matrix. Simulations test the ability of

the model to detect epistasis affecting a previously

identified locus and to improve the prediction of the

genotypic value of progeny for which marker data but

no phenotypic data exists. Previous research with this

model indicated that the interaction effect of the

genetic background was poorly estimated in individ-

uals that were heterozygous at the focal locus

(Jannink 2007). Thus, in simulations performed for

this study, I particularly look at how well epistatic

effects are explained under two levels of inbreeding.

Theory

To begin with, consider a two-locus model with a

focal locus Q and a background locus B. The only

effects that need concern us here are the main effects

of Q (denoted by a) and its interaction effects with B

(denoted by e). Thus the genotypic value G becomes

G ¼ lþ ai þ aj þ eik þ eil þ ejk þ ejl

where i, j, k, and l subscripts indicate the maternal

and paternal alleles for loci Q and B, respectively.

The a and e parameters are defined such that their

expectations and covariances are zero. With this

definition, the additive-by-additive epistatic variance

generated by the QB locus pair [denoted r2
AA(QB)] is

equal to four times the variance of a randomly

sampled e parameter in a population in Hardy-

Weinberg and linkage equilibrium.

Using this model, we can take into account the

genotype at locus B in determining the genotypic

value conferred to an individual x by receiving a Q1

allele at the Q locus: it will not just be a1 but

a1 + e1k + e1l, which we denote a1 + s1x. The param-

eter s1x therefore represents the deviation from the

main effect of the Q1 allele conferred to x by virtue of

its genetic background at locus B. A parameter s2x

can be similarly defined. These s parameters are the

marker by genetic background interaction effects. To

treat these as random effects, we need to determine

the covariance of the deviations present in different

individuals. Take the covariance of s1x and s1y.

covðs1x; s1yÞ ¼ covðe1k þ e1l; e1k0 þ e1l0 Þ

Where k0 and l0 are the alleles at the B locus in y.

This covariance decomposes into a sum of four

covariances like cov(e1k, e1k0). If alleles Bk and Bk0

are not identical by descent, this covariance is zero.

If alleles Bk and Bk’ are identical by descent, that

covariance is equal to the variance of a randomly

sampled value among all e1k [denoted var(e1•)].

Consequently,
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covðs1x; s1yÞ ¼ 4varðe1�Þhxy

where hxy is the coefficient of coancestry between x

and y.

Across all observations, the vector of interaction

effects between the Q1 allele and the genetic back-

ground can be modeled with a multivariate normal

distribution

s1�Nð0; 2varðe1�ÞAÞ

where A is the additive relationship matrix (each

element of A describes the additive relationship

between the individual x represented across the row

and the individual y represented down the column,

axy = 2hxy). The matrix A can be calculated from the

pedigree (Lynch and Walsh 1998) or from a sufficient

set of DNA markers (Weir et al. 2006). Note that an

individual need not carry any Q1 alleles for it to have

a s1 effect associated with it. The interpretation of the

s1 effect in the absence of a Q1 allele is simply that

that is the deviation from the main effect of the Q1

allele that would obtain if the allele were present in

the individual (say, if it were introduced by site-

specific mutagenesis). The distribution of the s2

vector can be similarly modeled, replacing var(e1•)

with var(e2•).

To relate the variances var(e1•) and var(e2•) back

to the more well-known additive-by-additive epista-

sis, r2
AA(QB), we need to relate the variance of a

randomly sample interaction effect e, var(e) to them.

Two equations that derive from the genetic model are

required. First, for any given background allele, Bk,

the interaction effects have zero expectation:

p1e1k þ p2e2k ¼ 0

where p1 and p2 are the frequencies of the Q1 and Q2

alleles (p1 + p2 = 1). Second, var(e) is a weighted

average of interaction effects with the Q1 allele and

interaction effects with the Q2 allele:

varðeÞ ¼ p1varðe1�Þ þ p2varðe2�Þ

Using the first equation we find

p2
1varðe1�Þ ¼ p2

2varðe2�Þ

p2
1

p2

varðe1�Þ ¼ p2varðe2�Þ

And substituting this into the second equation gives

varðeÞ ¼ p1

p2

varðe1�Þ

Or, through a similar development,

varðeÞ ¼ p2

p1

varðe2�Þ

The distribution of the vector of interactions with Q1

can therefore be rewritten as

s1�N½0; ð1=2Þ p2

p1

r2
AAðQBÞA�

So far, only the interaction between one back-

ground locus and the focal locus Q has been treated.

To extend this treatment to interactions with many

background loci, we must make the simplifying

assumptions that all interacting background loci are

in linkage equilibrium and that they only interact with

the focal locus, not with each other. In that case, the

overall interaction between the focal locus and the

genetic background is simply the sum of its interac-

tions with each individual locus: r2
AA(Q) =

P
r2

AA(QB). In what follows, the interaction devia-

tion s1 is redefined to denote the overall interaction

rather than the interaction with a specific locus B.

To cast this genetic theory into a linear model

whose parameters can be estimated, consider an

observation on individual i

yi ¼ lþ x1iða1 þ s1iÞ þ x2iða2 þ s2iÞ þ ui þ ei

where l is the population mean, x1i and x2i are,

respectively, the number of Q1 and Q2 alleles carried

by individual i (x1i + x2i = 2), ui is a polygenic effect

that accounts for additive genetic effects not absorbed

by the focal locus, ei is an error residual, and the a
and s terms have already been defined. Note that the

(a + s) terms have zero expectation:

p1ða1 þ s1iÞ þ p2ða2 þ s2iÞ ¼ 0

ða2 þ s2iÞ ¼ �ðp1=p2Þða1 þ s1iÞ

To make the linear model estimable, replace x2i by

2 � x1i and (a2 + s2i) with the above expression to get

yi ¼ lþ ½�2ðp1=p2Þ þ ð1=p2Þx1i�ða1 þ s1iÞ þ ui þ ei

This model can be written in matrix notation as

y¼ lþX1a1þ diag(X1)s1þuþ e

Epistatic Model
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where X1 is a vector of the [�2(p1/p2) + (1/p2)x1i]

values. Thus, the vector s1 has an incidence matrix,

which is similar to the incidence of the main

associated locus effect and a variance-covariance

matrix that is proportional to that of the vector of

polygenic effects u. Considering all fixed and random

effects then, the distribution of the observations

according to this model is

y�N½lþ X1a1; diag(X1)Adiag(X1)ð1=2Þ p2

p1

r2
AAðQÞ

þ Ar2
u þ Ir2

e �

A contrasting reduced statistical model that

assumes additive gene action can be defined as

nested within the Epistatic model:

y ¼ lþ X1a1 þ uþ e Additive Model

Simulations

A QTL was marked perfectly such that marker and

QTL were in complete LD with no recombination.

All other loci were simulated in linkage equilibrium

with each other and with the QTL, as follows. The

marked QTL interacted with 9 other independent loci

in a compound epistatic network (Cooper et al. 2002)

with each interaction generating a variance of S under

random mating such that the total epistatic variance

was 9S. Thus the 9 other loci create a polygenic

background with which the focal QTL interacts. The

expected marginal effect of the QTL was zero. Ten

other independent loci segregated, each generating an

additive variance of 4 under random mating. These

10 loci, in turn, generate a polygenic background

with which the QTL does not interact. A normal

deviate with a variance of 40 was added to the genetic

value to obtain a phenotypic value. The genetic

model assumed that all loci were biallelic with

frequencies of 0.5. Small stochastic deviations from

the expected allele and genotype frequencies in the

simulation, however, could generate deviations in the

epistatic variance actually simulated. To avoid these

deviations, once the pedigree and the allelic states of

individuals were simulated, allele frequencies were

calculated and epistatic effects adjusted to obtain the

desired genetic variances.

Pedigrees with four generations were simulated

using this genetic model. Simulations were per-

formed including a factorial of three parameters, each

with two levels: The value of S was either 2.2 or 0.55,

such that the epistatic variance was 20 or 5 (leading

to total phenotypic variances of 100 or 85 under

random mating); Each generation of the pedigree

contained either 80 or 160 individuals; Individuals

were either phenotyped and mated at the S0 gener-

ation or the S4 generation (where the S4 was obtained

from the S0 by four generations of self-fertilization).

The S4 generation of inbreeding was chosen because

it is often at this level of inbreeding that phenotypic

evaluations begin in self-pollinated crops. Individuals

of the first three generations were considered to have

phenotype and marker data while the fourth gener-

ation had only marker data. Thus, the population size

that contributed information to the estimation of

parameters was either 240 or 480.

Simulated phenotypes were analyzed with a linear

mixed model using the Epistatic and Additive models

given above. The pedigrees, genotypic, and pheno-

typic values were simulated, and the A and

diag(X1)Adiag(X1) matrices needed to fit the model

were calculated using a program written in C++.

These matrices were then imported into SAS (SAS

Institute, Inc., Cary, NC, USA) and the mixed model

analysis was performed in proc mixed. Detection

power was determined as the fraction of simulations

out of 500 for which the QTL by genetic background

interaction variance, r2
AA(Q), was found to be signif-

icantly greater than zero with a type I error rate of

0.05. Out of the 4,000 analyses performed, 98.9%

converged successfully. The others were discarded.

Genotypic values of the individuals from the fourth

generation were predicted using, for individual i,

ŷi ¼ l̂þ X1i â1 þ ŝ1ið Þ þ ûi

and

ŷi ¼ l̂þ X1iâ1 þ ûi

for the Epistatic and Additive models, respectively,

where the estimates of s1i, and ui derived from the

pedigree of i, and the QTL genotype information of i

provided X1i. Predicted genotypic values from the

two models were then correlated with the true

genotypic values known from the simulation.
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Results and discussion

The power to detect QTL by genetic background

follows what might be expected under random

mating: it increases when the size of the epistatic

interaction increases and when the population used

for detection increases (Table 1). More interestingly,

power to detect the interaction greatly increased

when the individuals evaluated were inbred such that

when the epistatic variance was 20, detection was

almost certain. Under the smaller epistatic variance of

5, power was much lower, but still markedly

improved under inbreeding relative to random mat-

ing. Two hypotheses can be proposed for the increase

in power. First, the variance generated by addi-

tive · additive effects increases under inbreeding

relative to random mating, much as for simple

additive effects. Thus, additive · additive effects that

generate a variance of VAA in a randomly mating

reference population will generate a variance of

4VAA in a completely inbred population. Second,

note that the value of the incidence matrix parameter

X1i = [�2(p1/p2) + (1/p2)x1i] is zero when the indi-

vidual i is heterozygous (x1i = 1) and the marker has

intermediate allele frequency (p1 = p2 = 0.5). Con-

sequently, the phenotype of an individual that is

heterozygous at the marker does not contribute

information to the estimation of the s1 effects, and

having more homozygous individuals at the marker

should increase the power of the analysis (Jannink

2007).

The analysis appears to estimate the effect of the

QTL by genetic background interaction in a relatively

unbiased way, regardless of the epistatic variance or

the level of inbreeding (Table 1). The lack of bias is

striking, considering the point made above that as

inbreeding increases, the phenotypic variance gener-

ated by additive · additive effects increases. The

construction of the coefficients in the incidence

vector X1 ensures unbiased estimation of the variance

generated in the population of reference used here,

namely a randomly-mating population. When the

QTL by background interaction term was included in

the model, the additive polygenic and the error

variance were also estimated without bias (data not

shown). However, in the absence of this term, the

additive · additive effects inflated both of those

variances (data not shown). Finally, in addition to

substantially increasing the power to detect epistatic

variance affecting a marked QTL, inbreeding also

greatly reduced the error with which the variance was

estimated (Table 1). The observed mean squared

errors on the epistatic variances decreased by close to

50% or more.

Correlations between the simulated (true) geno-

typic values of individuals in the fourth generation of

the pedigree and the genotypic values predicted by

the Epistatic and Additive models provide insight

into how epistatic variance affects our ability to

predict progeny values (Table 2). Under an additive

genetic model and random mating, the regression of

progeny value on parent means is equal to the

fraction of the phenotypic variance that is additive,

that is, the narrow-sense heritability. For the S0

inbreeding level, the Additive statistical model con-

sistently outperforms this expectation (Table 2). The

reasons are that, also under random mating, one

fourth of the additive · additive epistatic variance

contributes to parent-offspring resemblance. In addi-

tion, given that the full pedigree was used for

predictions, information from relatives other than

parents will have contributed. For the S4 inbreeding

Table 1 Power to detect

QTL · genetic background

interaction, mean estimate

of the epistatic variance,

and mean squared error

(MSE) of the estimate over

500 simulations as a

function of the size of the

population analysed, the

epistatic variance

simulated, and the

inbreeding level of the

individuals evaluated

Epistatic

variance

Population

analysed

Inbreeding

level

Detection

power

Mean

estimate

MSE

20 240 S0 0.65 20.4 86.0

20 240 S4 0.94 20.9 42.7

20 480 S0 0.92 20.0 40.4

20 480 S4 1.00 20.0 24.6

5 240 S0 0.08 5.3 47.5

5 240 S4 0.21 5.1 13.8

5 480 S0 0.16 5.0 21.9

5 480 S4 0.50 5.1 7.5
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level, predictions of this sort would require theoret-

ical developments that are beyond the scope of this

article. Suffice it to say that the predictive ability of

the Additive model does not follow an obvious

pattern relative to the fraction of the phenotypic

variance generated by additive effects: the correlation

is higher than the additive variance fraction under

high epistasis but lower than additive variance

fraction under low epistasis. Still, not surprisingly,

increasing epistatic variance from 5 to 20 decreased

the predictive ability of the additive model: across

other parameter values, correlations averaged about

0.53 versus 0.47 under low and high epistasis

respectively. Epistasis obviously affects genotypic

values in ways that the Additive model cannot

account for and that, therefore, increase error.

Less expected was the observation that increasing

epistatic variance did not improve the ability of the

Epistatic model to predict progeny genotypic values.

Apparently the Epistatic model was not able to

capture and account for all of the variance in

genotypic values generated by the interacting loci.

Under the S0 inbreeding level, the total genotypic

variance (additive + epistatic) increased from 45/

85 = 53% to 60/100 = 60% of the phenotypic vari-

ance under low versus high epistatic variance,

respectively. But this increase did not translate into

an increase in the correlation observed between

simulated and predicted progeny genotypic values.

Similarly, under the S4 inbreeding level, the total

genotypic variance increased from 70% to 78% of the

phenotypic variance under low versus high epistatic

variance without improving the ability of the

Epistatic model to predict progeny genotypic values

(Table 2). Perhaps rather than seeking to understand

the behavior of these models relative to theoretical

predictions, we may better simply compare their

relative performance. Here the results are fairly

straightforward: greater epistatic variance improved

the Epistatic model relative to the Additive model;

Higher levels of inbreeding also improved the

Epistatic model relative to the Additive model,

consistent with the fact that the variance generated

by additive · additive effects increases more rapidly

than that of additive effects. Finally, the different

population sizes had almost no perceptible effect on

the mean correlations observed for the two models. In

terms of the probability of the Epistatic model

outperforming the Additive model in any given

simulation, however, larger populations benefited

the Epistatic model over the additive model (last

column of Table 2). The advantage conferred to the

Epistatic model from more observations presumably

comes from the fact that the model requires the

estimation of an additional variance component. That

component is estimated more accurately when larger

populations are available (Table 1). Extrapolating

from Table 2, we can conjecture that the minimal

epistatic variance required for the Epistatic model to

outperform the Additive model is about 5% under

random mating, and about 2% under inbreeding for

the population sizes envisioned here. These are fairly

substantial variances to be associated with a single

marked locus.

Finally, it is worth contrasting the QTL by genetic

background interaction model presented here with

Table 2 Mean correlation between the simulated genotypic

value of a fourth generation individual and its predicted

genotypic value using the Epistatic or Additive models, and the

frequency with which the correlation was higher for the

Epistatic model than for the Additive model (Probability

Epi > Add). Individuals for which the correlation was evalu-

ated had DNA marker data but no phenotypic record

Epistatic

variance

Population

analysed

Inbreeding

level

Additive

correlation

Epistatic

correlation

Additive

fraction

Epistatic

fraction

Probability

Epi > Add

20 240 S0 0.46 0.49 0.40 0.20 0.80

20 240 S4 0.46 0.55 0.40 0.38 0.93

20 480 S0 0.47 0.50 0.40 0.20 0.86

20 480 S4 0.47 0.56 0.40 0.38 1.00

5 240 S0 0.50 0.50 0.47 0.06 0.51

5 240 S4 0.54 0.55 0.57 0.13 0.69

5 480 S0 0.51 0.51 0.47 0.06 0.56

5 480 S4 0.54 0.56 0.57 0.13 0.79
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others that have been published in the literature. First

are the QTL by genetic background models that can

be used when a diallel of crosses has been performed

(Blanc et al. 2006; Charcosset et al. 1994; Jannink

and Jansen 2001). In this case, the ‘‘genetic back-

ground’’ is modeled in a very coarse way: each cross

or population constitutes a background. Differences

between individuals within a population cannot be

accounted for with these methods. This coarseness

may account in part for the partial failure of the

methods in a recent case (Blanc et al. 2006). In this

case, the QTL by genetic background test did not

identify loci that were not already identified in tests

between pairs of loci. Blanc et al. (2006) noted the

possibility of ‘‘a repartition of alleles among parents

so that several digenic epistatic effects cancel out each

other and result in no significant QTL by genetic

background interactions.’’ The canceling out of

digenic epistasis of this type would occur because

the alleles at interacting loci are averaged over the

genetic background considered in those models, that

is, over the population as a whole. Methods that can

account for genetic background on a finer scale, that

is, individual by individual, might have a better

chance at identifying such interactions. Indeed, in the

case simulated here, the locus that interacted with the

background was part of nine digenic interactions. Had

the genetic background been modeled in the coarse

way of the diallel cross approach, those interactions

might indeed have canceled each other out.

At an even finer scale, Boer et al. (2002) envi-

sioned one-dimensional genome scans for epistasis in

which all pairwise interactions between the focal

locus and all other markers were tested simulta-

neously. Because this approach requires many factors

to be included in a single model, ridge regression was

adopted to penalize large effect estimates (Boer et al.

2002; Whittaker et al. 2000). The Boer et al. (2002)

method is in some sense a hybrid between the QTL

by genetic background approach and standard digenic

interaction approaches. Because it examines one

focal locus at a time, it identifies loci that interact

with background. At the same time it should identify

those regions of the genome that interact with the

focal locus, something that QTL by genetic back-

ground approaches typically do not do. Balancing

these advantages is the fact that the Boer et al. (2002)

method requires a set of markers in linkage disequi-

librium with their surrounding genome, such that

reasonable genome coverage is obtained. In the

absence of such coverage, interactions may be

missed. Linkage studies typically achieve this cover-

age (and Boer et al. 2002 examined the method in

that context) but association studies may not, partic-

ularly when they focus on candidate loci. The method

presented here does not require such coverage.

In conclusion, therefore, the method presented

here presents a hopefully useful middle ground to

identify loci that interact with the genetic background

even when their interactors cannot be located. The

most striking result of this contribution is the

increased accuracy of epistatic variance estimation

and progeny genotypic value prediction that occur

when the method is applied to inbred individuals.

This should make the method well-suited to self-

pollinating crops such as wheat, barley, oat and

soybean.
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